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l
LIST OF SYMBOLS

1. English zLetr
S A1 A2 A3 A4  Cable bending and torsional constants, defined in (38) and (39).

b Binormal unit vector of flow-based coordinate system, defined in figure 5.

I B Binormal unit vector of curvature-based coordinate system, defined in figure 5.

SD Drag and hydrodynamic loading force per unit length, defined in figure 7

= Dn fi + Db b+Dt.

e Cable stretch, defined in (16) and (17).

F. Effective Young's Modulus of cable.

I G Effective Shear Modulus of cable.

i• I I2 I1 Principal moments of inertia of cable per unit length, as defined in

equations (31) and (32).

1 1B Cross-sectional bending moment of inertia, (40).

Ip Cross-sectional twisting polar moment of inertia, (37).

S101,t Arc length a~ong unstretched and stretched cable.

MI M2 Mt Bending and twisting moments in cable around the 1, 2, and 3 axes, as shown

Iin figure.

Mb Total bending moment in cable owing to cable curvature, as shown in figure 9.

Sfi Flow-based normal unit vector, figure 5.

. Nq Curvature-based normal unit vector, figure 6.

R Local radius of curvature of cable.

T Vector from inertial origin to cable point.

• t Flow-based tangent unit vector (same as 3).

1T Curvature-based tangent unit vector (same as 3).

T Cable tension.

I
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o Euler's second angle, see figure 3.
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FOREWORD

The following report will develop a complete set of field equations for the dynamic motions

of a towed cable system. These equations, when solved, constitute a dynamic simulation of a

towed cable system.

During gentle maneuvers, the important forces in the governing force balances on a cable

system are tension and ydrodynamic drag. In more severe maneuvers involving highly dynamic

situations, however, the effects of shear, bending, torsion, extension, rotary inertia, and inertia can

be important, and sometimes even mathematically necessary.

Many dynamic models for simulating the motions of a towed cable system already exist.

Many of these models, however, by ignoring the above-mentioned effects, have iestrictive

assumptions built into them. The model represented by the equations developed here does not

have these restrictions. Thus, the equations can be used e:ther for more accurate simulations of

"highly dynamic situations or simply for studying the range of validity of simpler models.

vii/viii
Reverse Blank
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I
A COMPLETE SET OF FIELD EQI .' TIONS

1 •FOR THE DYNAMIC SIMULAThIN
I OF A TOWED CABLE SYSTEM

T THE COORDINATE SYSTEMS

The total field equations describing the dynamic behavior of a towed system involve four

coordinate systems: 1) a fixed inertial coordinate system in which to write the translational

dynamic equations, 2) a body-fixed/principal-axis coordinate system in which to write the

rotational dynamic equations, 3) a flow-based coordinate system in which to write the

hydrodynamic loading, and 4) a coordinate system based on the local cable curvature in which to

express the bending and twisting moments.

THE BODY-FIXED COORDINATE SYSTEM (i, 2, 3)

Consider two orthonormal coordinate systems: a fixed inertial one (i, 5, i), and a body-

fixed one (i, 2, 3). (See figure 1.) Three successive rotations, through the Euler angles (p, 9, and

N'. can be performed to transform (X., i) to (i, , ).
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i2

Figure 1. The Inertial and Body-Fixed Systems

The first rotation, through the angle fp about the i axis, iransforms the (i, 9, •) system to

an (i', 9', i') system where, of course, i coincides with i'. The second rotation, through the

angle 0 about the i' axis, transforms the (i', ý', i') system to an (i", 9", i") system where, of

course, x" coincides with V. Finally, the third rotation, through the angle iV about the i' axis,

transforms the (i", ^', ") system to our body-fixed system (i,2, 3). Figures 2 through 4 show

these rotations, as well as the resulting rotational matrices nV, no, and n.

2
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y cos\ 4 sin op 01
n,=q -simpq cos9 0

0 0 iJ

>VX Y, v z,y,) =~ V (xy,.)

Figure 2. The q Rotation

I

" [t o0 0]

n 0 •cosO sinO
-" .n •-i -s.nO cosOJ

Y ~V(X yAz) = ( y1 VxjZ')

Figure 3. The 9 Rotation

-wJ [cos V sin V 0] I
~~= sin~ VCosIV 01

Figure 4. The r Rotation

3
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Thus, the inertial and body-fixed coordinate systems are related as follows,

90 2 3) = ~ fl VyZ)()

nt = ?tW no n (2)

9 o cos V -sin cs sin;V s;nycosW+cospcsOsin¥ sin~siny]

n=/,cosgpsinV-sin~pcos~cosW -singsinii +cospcosOcosI sin~cosW| (3)

sin9 sinO -cos9 slnO cose J

9. . i • (4)

and, in equations (3) and (4), we have spelled out the components of the i, 2, and 3 unit vectors

in the (i, 9, i) system. However, because we will also be needing the components of i', 2', and

3' in the (i, j, i) system, now is a good time to write them out, too.

COMPUTATION OF P', 1', AND 3'

The derivatives of the cable-fixed unit vectors with rspect to unstretched cable arc length

will be derived here (they will be neaded in the next section). By the chain rule we can write

a a A + A
ato a ato ae ato a4 ato

a! iA~ + 22Ao a! a (5)
ato a9  ato  ao at. at.

= 3~+ a3ae + 03
ato0  a9  o a to . ato

4
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I Thus, finding the derivatives of the (i, 2,3) unit vectors with respect to to comes down to finding

I their derivatives with respect to the three Euler angles, 4p, 0, and W.

I From figure 4 we can write from inspection

IA (6)
II •A _o.

I
From figure 3 we can write from inspection

a ", (7)

as- -~= -�9".

I
II Using the nl, rotation matrix from figure 4, we can rewrite each double-primed

cooudinate system vector in equation (7) in terms of the body-fixed system unit vectors. This

gives

sin V cos l a/ae/ = (8)
c os L.a5/0 [0 -sinai-cos'j

I which, when solved, yields

KU 5
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S= sin y 3

= cosy 3 (9)

. -sinyii-cosylV.

From figure 2, we can write from inspection

= -(10)
clp 0

Using the nl and 1ben matrices from figures 3 and 4, we can rewrite each single-primed

unit vector in equation (10) in terms of the body-fixed system unit vectrs. This gives

[cM()sin y cos0cosAV -sing /all 1= -cos•+ /sinV ](/-
L sin V s SinOcosyv coseJ a3/01J0 0

which, when solved, yields

= cosO2-sin0cosy 3

_ = - cos0 1 + sin siny 3 (12)

= sinO cosi V -sinO sin2.

6
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I
Finally, substituting equations (6), (9), and (12) into equation (5) gives us the derivatives we

3 were after.

I 0
-4p -p'sin 0 cosV + O' sin i .12 3

f -Cos9- ' '
- 0 (13)

1[p'sinesinV+O0'cosJI 1 23

(p s'ine 0cs V,- 0' sin V'
-3-(p' sin Osin V- 0' cosV .

=l 0oJ123

I

THE FLOW-BASED COORDINATE SYSTEM (fi&, )I
The hydrodynamic forces on the cable will be written most easily in a coordinate system

using the local flow, U, and the cable to define the system. The local flow U is the cable velocity

S through the water and is thus the ca~e velocity U less any currents: U = U-U. Figure 5

defines such a system.

II

j/ |

./

•"/ " ." ;-z ' - . ..
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tfix

b 1 x i/U sin a
t=3
0= (UvW)

Figure 5. The Flow-Based Coordinate System

In this coordinate system, the tangent vector t is defined as 3, the same tangent vector used

in the body-fixed coordinate system. Next, using 1 and U to form a cable/flow plane, the

b>r:,--zl b is defined normal to the 1/0 plane. Finally, using t and b, the normal vector fi is

formed, c•,'-pleting the orthonormal set (fi, b, Thus, performing the algebra indicated in

figure 5, and using the results of equations (3) and (4), we can write:

j-8

-.-
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3 W sin p sinO cosO - U cose cosO - U cos(p cospi sine sine
- V cos qp sin pV sin 0 sine

s I a 1-u cosp sinq4 sine sinO - V sinqp sinp sin0 sinO - V cosO cose
Is W cosq) cosO sine

3 -V coscp cosO sinO - W sinO sine + U sinqp cosO sine Gyz

V cosO + W cosqp sine
b Sij' sni sin e}- cs (14)-jU cossin- qsin8-UVsinpsinx

osin4p sin V0

-Cs sine

ios y

Cosz = (Usin 0 sine - Vcoso sin 0 + Wcos0)/lUi.

I
THE CURVATURE-BASED COORDINATE SYSTEM (F, A, tr)

SA curved line in space can be used to define three directions: tangent, normal, and

binormal. Consider figure 6.

SI
iI

I
I

1 9

I
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oB

T ~ R Pt' pŽ!O

9 tb

N

Figure 6. The Curvature-Based Coordinate System

The tangent vector T in this coordinate system is the same as that in the flow-based

coordinate system; it is also defined as 3, the body-fixed tangent vector.

The normal vector N is defined by the curvature; in other words, by the way T changes.

Locally, the curvature of the line defines a plane, the plane of curvature. V' is orthogonal to T,

but its magnitude is equal to the curvature, not to unity. Thus the reciprocal of the curvature, the

radius of curvature p, is used to form a unit vector out of t'. Finally, the binormal vector Bi is

"formed from the cross product of T and N. This completes our orthonormal set (N, B, "). The

N/B plane is called the normal plane, the B/T plane is called the osculating plane, and the T/N

plane is called the plane of curvature.

10
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3 THE DYNAMIC EQUATIONS - TRANSLATION

I Consider a differential section of cable of stretched length dt, as shown in figure 7.

I
STt V1

"+ I ;. "4d

% + wdt

KU f)dt
- ,u

Figure 7. Force Balance on Cable Segment

The external forces acting on the cable are the weight per unit length W and the hydrodynamic load

- -per unit length f. The internal forces acting on the cable segment are, in our body-fixed

coordirate system (i, -,3), the tension t, and two shears, V, and V2 . Thus, a simple force

-•I balance yields

-de+ dt+ i + d-w id + 6dt dld (15)

I
In equation (15) we use our sign convention wherein forces are considered positive when

drawn in a positive direction on a positive face. Both w, the weight per unit length, and g, the

mass per unit length, are written in terms of the stretched length, di. We can write everything in
terms of the unstretched length, d10 , by introducing the strain, e, and the stretch, e:

II

I
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A (ato) at-atuo
e= k= =- = dp d 1  (16)

Cit0  d1o

- C11 £ 1 (17)
Clio

Thus, we can introduce the unstretched mass and weights per unit length, go and w0,

0 = -(18)

w- W0  (19)
e

and rewrite equation (15) as

aV1 + aV2 + ' (20)S',alo alo alo -D go U (2

or

V''+ V2 + T'- wo. + e 5 go, (21)

where the" '"refers to differentiation with respect to to, and the "" refers to differentiation with

respect to time. Equation (21) is deceptively simple because only the wo term and the u term are

in the inertial coordinate system (i, Y, i). Written explicitly in terms of the body-fixed and flow-

based coordinate systems, equation (21) becomes

V,'i + V, i' + V2' + V2 2^' + T'3 + T3"

(22)
.-Wo + eDnfi + eDji = goo(6i + v5, + '),

12

-- ,
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I
where Dn is the normal component of the drag force per unit length and D, is the tangential

I component, both to be specified later.

To rewrite equation (22) in terms of only the fixed reference frame (i, 9, i), we must first

j replace the derivatives of the body-fixed unit vectors (i', 2', 3') by their values given in

equation (13). Next, we must replace all non-inertial unit vectors (i, 2,3, i, i) by their values

-- 1 given in equations (4) and (14). The result is our three translational dynamic equations of motion:

. F = m a,

I T' (sin sine)

+ T (4p' cos p sin0 + 0' sinp cosO)

,V + V(cosq> cosV- sinp cos 0sin V)
+Vt (-q,'sinpq cos v- I'cosip sin1-I- q( cos( cosO sin-q

:;j: + 0° s�'sinq 0sinsi -1V'sinp cos0 ossn) (23)

+ V2' (-cosq4 sin y - sinop cosO cosi)

I +V2 (qp'sinp sinV -V'coscosv-4p' cspcos 0cosV

+ 0' sinp sine cos v + iV' sinp cosO sin V)

"I i+ siDn (-U cos2 psin 2 eUcos2  _ Vcospsinpsin2e+WsinqpcosOsine)

".+ e Dt (sin q4p in 0)

IL 6

"" I

- 'I

• // 13

* /I..
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Fy= n ay

T" (-cosqi sine)

+ T (p4' sin qp sin e - e' cosp cos e)

+ Vf' (sinp coslV + cosq 4cosO sinN)

"+ V1 (;p' cosq pcosA - I' sinp sin4f - p' sinq) cosO sin 4

-0' cosqp sine sin V + V` cosp cose cosyI) (24)

+ V (-sinp sinA + cosq 4cos 0cos AV)

+ 1,2 (-p' cos q sin V - ' sinq pcosV- (p' sinp cos 0cosN4

-0' cosqp sin0 cos N - V' cosq icos0 sin 4r)

+ +ePn (-U cos• sinqpsin 2 O- V sin2 q• sin2 0-_V cos22 -W cosp cosO sine)
Msin a

+ eD (-cosqp sine)

/

/=_ni

T'cosO

+ T (-0' sin 0)

V+v(:in•0•sin N)

+ V, (0' cose sinN4 + V' sin 0cosNA) (25)

+V2 (sin 0 cos') e

+ V2 (e' cosO cosN- y' sine sin V)

+ -=-n (U sinq cosOsinO - Vcosgpcosesine- w sin2 O)
Msin a

"+ e D, (cos0)

WO 0 W
I

'i 14
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I THE DYNAMIC EQUATIONS - ROTATION

IConsider a differential section of cable as shown in figure 8.

M2 2
i2

Va + -V 2

Figure 8. Moment Balance on Cable Segment

As shown in figure 8, the cable segment is subjected to the internal shearing forces and tension

(Vi, V2, and T), as well as the internal bending and twisting moments ( , 2, and F~t). By

taking moments around the center of the segment, we need never introduce the weight and drag

forces (whose torque contributions are of a higher order). In the body-fixed/principal-axis

coordinate system, the dynamic equations of rotation arm

'1= I1 Cb1+(I 3 -12 )co2 0)3
T2 = I2 Cb2 +(11"-I 3 )°)3°01  (26)

T3 = 13 Cb3 +(1 2 -1 1)col 2 ,

where ;i is the torque about the ith axis; Ii, the principal moment of inertia about the ith axis; and

coi, the angular speed about the ith axis.

15

l-/
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I
From figure 8, the net torque on our differential segment is I

d- -- dt+ dt+al•d+ LdU+Vd CU -V 2 dCU (27)

By introducing the unstretched length [equation (17)], equation (27) is changed to i

d"= Mldto+Mdto+~t 0Vo+Vledto2-V 2 edtoi (28) 1
or I

= 'f+i • '2 +FA+t+V ie2-V 2 el (29)

0• I
or1

= Mli+Ml'+Mi2 +M 22'+M,3+M3'+V1 eC-V 2 el. (30)

The three principal moments of inertia of our segment of length dt are:

d1l =dI 2 =*,±dtr 2  I
d13 =4•Ldtr 2. (31)

Again, we introduce the unstretched lengths

I fi, I = I•, =

I3 =2I', and (32)

0 4 AOr2.

16 U
U
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IIn the body-f•xed/principal-axis coordinate system, the angular velocity is written in terms

of the Euler's angles as (see reference 1):

sin 0 sin V + cosy'i~
o= sin 0 cosyv- sin y . (33)

cose + .12n3I
Finally, using equation (33) for the angular velociti.s, equation (32) for the moments of

inertia, equation (30) for the torques, and equation (13) for the derivatives of the unit vector,, tr

governing dynamic equations of rotation (26) can be rewritten as:

M, + M2 (-p' cos0 - V') + Mt (p' sin0 cosV - 0' sin y) -eV 2

-10 [0 sine sinvI+6 cosvi+40 2 cosO sinecosy (34)

I + 2 sine cosy - 2 6 * sinV} = 0

M1 (9'cosO + y') + M' + Mt (- 9'sinO sin, -O'cos) + e€V1

-1 {0 sin0 cosW - 6 sin ,-y 2 cos esin0 sinj (35)

- 20, sine sinV - 26* cosyv} =0

M1 (- "p'sinO cosy + O'sinl,4) + M2 (4p'sin0 sinV + O'cosy)

+ M'- 2I0 {=0osO-qOsin0+ q}-0. (36)

17
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CONSTITUTIVE AND KINEMATIC RELATIONS

"In the second and third sections, we developed six dynamic equations in 13 unknowns:

three moments (MI, M2, MJ), three forces (VI, V2 , T), three velocities (u, v, w), three angles

(4p., #v), and the stretch e. In this section we will develop the seven equations needed to close

the system.

CONSTITUTIVE EQUATION FOR THE TWISTING MOMENT

According to the linear theory of elasticity, the twisting moment and the twist per unit

length are linearly related through the shear modulus and the polar cross-sectional moment:

- CIP (37)

If we assume that the cable is not torque-balanced, then we can write that the twisting moment is

also linearly related to the strain e =e- 1:

Mt = A4 #+ A3 (e - I). (38)

CONSTITUTIVE EQUATION FOR THE TENSION

Again, according to the linear theory of elasticity, the tension and the strain are linearly

related through Young's Modulus and the cross-sectional area:

T =EAe.

18
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I
Again, if we assume that the cable is not torque-balanced, then we can write that the tension is also

I linearly related to the twist:

I T = A,(e-1)+A 2 A'. (39)

I

CONSTITUTIVE EQUATIONS FOR THE BENDING MOMENTS

According to pure bending theory, which we will use despite the fact that shears are

present, the bending moment is linearly related to the bending rigidity (E 1), and inversely related

to the radius of curvature (p). Figure 9 shows this relationship in terms of the (Nq, A, t)

coordinate system, the coordinate system based on the local curvature, developed in the first

section.

IB

Ib

1M b
"I

Figure 9. Pure Bending

19
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Because the bending moment is defined as being in the binormal direction, we can write,

from figures 6 and 9,

I - l3  = EIa'xjT (40)

or

C•B = EIB XTxT'. (41)

V, Using equation (13) for 1" = 3/1a0, we can write

4pq' sin 0 sin yI - 0' cos 4r)'

x ix' (P sine cosN( - 0' sin I1 (42)

0•.;.123

or

fp' sine sin + 9' cos•)

eM3 = EIB (p' sinO cosyv- -'sin0 ' (43)

S0 J123

where the cross-sectional bending moment IB is for bending around the B axis and is, for a

homogeneous cable, x R4/4. Thus, the constitutive equations for the two bending moments are

eM, = EIB (4p'sin0sin V +O6'cos V) (44)

and
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.M 2 = EIB(p'sinOcosy -0'sinV). (45)

I KINEMATIC RELATIONS

I The (x, y, z) coordinates of a point on the cable, and the (4p, 0, W) angles at that point, are

independent. However, the way in which the coordinates change along the cable is determined by

SI the orientation of the cable, by the angles. Specifically, the cable coordinates change in the

'I direction of the tangent vector

3= , (46)

I which, written out by components, gives us three kinematic equations:

x e sin(p sin0, (47)SI
y= -ecosq sin0, (48)

and

iz = cosO. (49)

"/I

I
I
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SUMMARY

In this report we developed a complete set of field equations describing the dynamic

behavior of a towed cable and/or array. The cable has bending stiffness, torsional stiffness,

extensional stiffness, inertia, and viscous drag. The viscous drag (as well as added mass) is left as

a generic term to be defined by the users according to their specific needs.

"The complete set of field equations consists of 13 nonlinear partial differential equations

and is repeated here for conciseness:

L F. m a

T' (sin 4 sin 0)

+ T (qp' cos p sinO + 0' sin4 cosO)

.+ V' + (cosq4 cos V - sin9 cosO sin )

+ V, ("-'sinc cosW - 4j'cosq sinr - 9'cosp cose siny

+ 0' sin 4 sin0 sin Ni - V' sinq( cos0 cosy) (50)

+ VI (-cosp sin V - sin9 cosO cos N)

+ V2 (9' sinp siniy - V' cosp cosv - 9'cosp cosO cosV

+ 0' sinp sin 0 cos V + V' sin (p cos 0 sinql)

+ eD (-U cos2•• sin O-U s2  p -Vo sin 4p sin 2 0+ W sin p cos 0 sin 0)

+eD, (sin9 sin0)

-(;o+ g.)I.

22
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32. FY=m ay

T'(-cosop sin 0)
+ T(4p'sin9 sinO -0'cos~pcosO)3 +V('(sin~pCOs~j,+cOs~pcOs~sinAV)
+ V1 (4p'cosqp cosiy - 41' sin~p sin V- (p'sin~pcosO sin~t

-0, cos psinO sin V + V~4' cos p cos e cos V) (1
+ VI (-sinq( sinV~ + comp cosO cosqv)3 +V 2 (- 4'cospsin W-V' sin(pc osq - p' sin p cos 0cos 4t

-0' cos p sin 0 cosij - 4' cos p cos e sin W)

+ eD,(-cos (psin 0)

+T(-O'sinO)

+ V, (O'cosO sinNW+ N,'sin 0cos W) (52)
+I V2'(sin 0cos V)
+ V2 (0' cos 0cos i - V' sin 0sinlV)

I + CD (Usin~ cosO sinO -V cosq cosO sinO -W s~n 2 0)

+eDt (cose)
-WO

I +. M M2 (9cos 0-N'+ Mt ((p'sin 0cosAV - 0' sin V)-ceV 2
- in 0 i t+6cs4 cosO sin 0cos14l (53)

+20sin0cosAV-26*sin4I=0.

~1 23
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5. NM (4p'cosO + V') + M+M (-+ M ' sin inq -O' cos,) + eV, I
"-10 {• sinecosw- 0 sin-V -2 cosO sin~sinV (54)

-240, sinO sinV - 20* cosv}= 0. I
6. M (-q' sine cosyV + 0' sinV) + M2 (9' sine sin V + Oe cosy)

+ Mt - 2 10{ cosO-.0sinO + -0. (55)

7. Mt A 4 ,'+ A3 ( 1-1). (56)

8& T - A1 (e-1)+A 2 V, (57)

9. eM1 - EIB (4p'sin0 sinF + O'cosvf). (58) I
10. eM 2 " EIB (Qp'sin cos -O'siny). (59)

I1u = d (esinp sine). (60)

12. v = d(e cosqsin0). (61) I
dt

I
13.(e cos). (62)

-. I

The 13 unknowns are the 3 forces (V1, V2, T), 3 moments (MI, M2 , Mj), 3 velocities

(u, v, w), 3 angles (q(p e, i,), and the stretch e. Written as such, the 13 equations (50-62) are first

order in space and second order in time. By introducing the 3 angular velocities, I

x = 4,, (63) !

24i
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0,= ,and (64)

C - •, (65)

we would increase our system to 16 equations in 16 unknowns and become first order in space and

time.

Finally, because these equations will potentially be used to study the higher order effects of

rigidity and torsion, we can simplify these equations for comparison and reduce them to the more

standard six unknown systems written here in equations (66) through (71):

T' (sin (p sin 9)

"+ T (p' cosq) sine + 0' sin4 cosO) (66)

. :-,+ (-U cos2 p sin - ucos2 o- vcosq psin qsin 2O+Wsinq cosOsinO)[Ul sin a

+ Dt sin p sin 0 (go + A.) Ui

T' (-cos p sin0)

+ T (4p' sinq psine - O' cosq pcos0) (67)

+ iDo -U coup sin ( sin 20_ V sin2 pq sin 2 e - cos2- w WosCp cosO sine)
lIlsina (

+ Dg (-cos q sin0) = (go + gj)4

T' cosO + T (- ' sin 9)

+ Do (U smn) cose sine - V cusip cosO sine - W sin2e) (68)Msina

+ Dt cosO - wo0 (g + A,.)

dU -(sinpsine) (69)
dt

25
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dt

V d

•--=--dt (cos 4p sin 0) (70)

-(cosO). (71)
dt

The solutions to these equations will be the subject of a subsequent report. I

I
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